On Lengths of Rainbow Cycles
نویسنده
چکیده
We prove several results regarding edge-colored complete graphs and rainbow cycles, cycles with no color appearing on more than one edge. We settle a question posed by Ball, Pultr, and Vojtěchovský [BPV05] by showing that if such a coloring does not contain a rainbow cycle of length n, where n is odd, then it also does not contain a rainbow cycle of length m for all m greater than 2n. In addition, we present two examples which demonstrate that this result does not hold for even n. Finally, we state several open problems in the area.
منابع مشابه
On Rainbow Trees and Cycles
We derive sufficient conditions for the existence of rainbow cycles of all lengths in edge colourings of complete graphs. We also consider rainbow colorings of a certain class of trees.
متن کاملOn Rainbow Cycles
We prove several results regarding rainbow cycles within edge-colored complete graphs. We refute a conjecture by Ball, Pultr, and Vojtěchovský [BPV05] by showing that if such a coloring does not contain a rainbow n-cycle, where n is odd, then it also does not contain rainbow cycles of all sufficiently large lengths. In addition, we present two examples which demonstrate that this result does no...
متن کاملOn the outer independent 2-rainbow domination number of Cartesian products of paths and cycles
Let G be a graph. A 2-rainbow dominating function (or 2-RDF) of G is a function f from V(G) to the set of all subsets of the set {1,2} such that for a vertex v ∈ V (G) with f(v) = ∅, thecondition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled, wher NG(v) is the open neighborhoodof v. The weight of 2-RDF f of G is the value$omega (f):=sum _{vin V(G)}|f(v)|$. The 2-rainbowd...
متن کاملOn Rainbow Cycles and Paths
In a properly edge colored graph, a subgraph using every color at most once is called rainbow. In this thesis, we study rainbow cycles and paths in proper edge colorings of complete graphs, and we prove that in every proper edge coloring of Kn, there is a rainbow path on (3/4− o(1))n vertices, improving on the previously best bound of (2n + 1)/3 from [?]. Similarly, a k-rainbow path in a proper...
متن کاملOn Rainbow Hamilton Cycles in Random Hypergraphs
Let H (k) n,p,κ denote a randomly colored random hypergraph, constructed on the vertex set [n] by taking each k-tuple independently with probability p, and then independently coloring it with a random color from the set [κ]. Let H be a k-uniform hypergraph of order n. An `-Hamilton cycle is a spanning subhypergraph C of H with n/(k−`) edges and such that for some cyclic ordering of the vertices...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 13 شماره
صفحات -
تاریخ انتشار 2006